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I. INTRODUCTION

Let X be a topological space and let Y be a metric space with metric d.
Let 2 Y denote the collection of all nonempty subsets of Y. By a mul­
tifunction from X to Y we mean a function r: X ---> 2 Y. A multifunction r is
called lower semicontinuous (l.s.c) if for each open set G in Y
{x: r(x) (\ G # 0} is an open subset of X. A single valued function
I X ---> Y is called a selection for r if for each x E X f(x) E r(x). Perhaps the
most well-known result on the existence of continuous selections is the
following theorem of Michael [8]: if X is paracompact and Y is a Banach
space and r: X ---> 2 Y is l.s.c. and has closed convex values, then r admits a
continuous selection.

Michael obtained this result after first proving a more generally
applicable approximate selection result. If E is a nonempty subset of Yand
I: > 0, let S,[E] denote the union of the open balls in Y whose centers run
over E. A function I X ---> Y is called an c;-approximate selection for
r: X ---> 2 Y iffor each x in X f(x) E S,[r(x)]. Specifically, Michael proved
that if X is paracompact and Y is a normed linear space and r: X ---> 2 Y is
l.s.c. and has convex values, then for each I: > 0 r admits a continuous
f.-approximate selection. It is easy to see that lower semicontinuity is not
necessary for either of the two above results. Recently, Deutsch and Ken­
derov [5] characterized those multifunctions defined on a paracompact
space with convex values in a normed linear space that admit for each f. a
continuous c;-approximate selection as those that are almost lower semicon­
tinuous (a.l.s.c.): for each I: > 0 and for each x in X there exists a
neighborhood V of x such that n {S,[r(w)]: \l'E V} # 0. It is easy to see
that lower semicontinuity implies almost lower semicontinuity and that
almost lower semicontinuity is necessary for the existence of a continuous
selection. Following the method of Michael they were able to prove the
following result.

90
0021-9045/85 HOO
Copyright(· 1985 by Academic Press, Inc
All rights of reproduction in any form reserved



ON A THEOREM OF DEUTSCH AND KENDEROV 91

THEOREM. Let X he paracompact and let Y he a I-dimensional normed
linear space. Suppose I: X ---+ 2 Y has compact convex values. Then I admits a
continuous selection if" and only if" I is a.l.s.c..

Naturally, they asked if this result held more generally. In this article we
show that their result is best possible, i.e., it fails if Y is 2 dimensional. We
also present several characterizations of closed convex valued mul­
tifunctions with values in a Banach space that admit continuous selections
in terms of the notion of almost lower semicontinuity, one of which
involves the existence of a fixed point for a certain map on the sub­
multifunctions of the given one. Finally, we prove some selection and
approximate selection theorems for nonconvex valued a.l.s.c. mul­
tifunctions.

Before proceeding we present some additional notation and terminology.
If A is a subset of a topological space, A will denote the closure of A; if A is
a subset of a linear space, conv(A) will denote the convex hull of A. If X

and Yare topological spaces, a function f: X ---+ Y is said to be of Baire
class rJ. < Q if for each open set G in Y f -1 (G) is a set of additive class rJ. in
X. In particular f: X ---+ Y is said to be of Baire class one (resp. two) if for
each open set G in Y f '(G) is an Fer (resp. G"er) set. For a thorough dis­
cussion of such functions the reader should consult [6J, where the
functions of Baire class rJ. are called B-measurable of class rJ.. Suppose now
that Y is a metric space and r: X ---+ 2 Y is a multifunction. If £ c Y we write
I '(E) for the set {x:r(x)n£#0}. If for each nEZ+ I n:X---+2 Y

, we
will say that <In) converges to I if for each x E X <In(X) converges to
r(x) in Hausdorff distance [3 J: for each I: > 0 there exists N E Z+ such that
for each n? N both S,[r(x)J::::J In(X) and ScCln(X)J::::J T(x). This notion,
as well as more general notions of convergence of multifunctions (and the
convergence of associated measurable selections), is considered in a recent
paper of Salinetti and Wets [1OJ.

Let I: > 0 and again let r: X ---+ 2 Y. For each x E X define T(1:; x) c Y as
follows:

r(e; x) = {y: for some neighborhood V of x

yE n {S,[r(w)]: WE V}}.

Clearly, I is a.l.s.c. if and only if for each f. > 0 and x in X the set r(1:; x) is
nonempty. For each x let 8r (x)=n,>or(e;x). Evidently, 8r (x)cT(x),
and if I admits a continuous selection f then f(X)E8 r (x). Example2
below shows that almost lower semicontinuity if I does not ensure that the
sets {() r(x): x E X} are nonempty. However, we shall see that this is the
case if r is a.l.s.c. and compact valued.
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2. CONTINUOUS SELECTIONS FOR CONVEX VALUED MULTIFUNCTIONS

We first produce an a.l.s.c. multifunction r: [0, I] -+ 2R x R with compact
convex values that fails to admit a continuous selection.

EXAMPLE 1. For each nEZ+ let an=Hl/n+l/(n+l)]. Define
r: [0, I] -+ 2Rx

R as follows:

l(x) = (0, 0)

= COny lC, I), (an' 0), C~ l' I)J
if x=o

I I
if--<x~-.

n+1 n

The values of r are all compact convex sets. It is easy to see that

() I( x ) = l( x )

= [(lIn, I l}

if X${~,*,L... }

if x = I in for some n > I.

Since for each x E [0, I] the set () I(X) is nonempty, we conclude that
l( c;; x) is nonempty for each x and c; > 0, whence r is a.l.s.c. Now iff were
a continuous selection for r, then the requirement f(X)EOr(X) would
imply (i) frO) = (0, 0) and (ii) for each integer n> I f( lin) = (lin, I). Since
this is incompatible with continuity, no continuous selection for r exists.

We next show that an a.l.s.c. multifunction r: [0, I] -+ 2R x R with closed
convex values need not admit a Borel measurable selection.

EXAMPLE 2. Let B be non-Borel subset of [0, I]. Define
r: [0, I] -+ 2R x R by

l(x) = {(y, ;;): y>O,;;? I

={(O,z):z?O}

if XE B

if X$ B.

Let n be an arbitrary positive integer. Then for each x E [0, I] there exists
(y,;;) E l(x) such that II(Y,;;) - (0, n)ll:( lin: if XE B take (y,.:;-) = (lIn, n),
and if x $ B, take (y, ;;) = (0, n). Thus, r is a.l.s.c. But if f is a selection for
r, we have

f 1({y,;;):y>O,;;?I/y}J=B.

Thus, the inverse image underf of a closed set need not be Borel, whencej
is not Borel measurable.

The last example shows that if X is paracompact and Y is a Banach
space and r: X -+ 2 Y is a.l.s.c. and has closed convex values, then r need
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not admit even a Borel selection. Still, we can characterize those I' that
admit continuous slections in terms of the maps 1'\ ---> 1'\ (1:;') and 1'\ ---> (1 [,

defined on submultifunctions of I'. We need a preliminary lemma. It should
be noted that both this lemma and Lemma 2 below are much in the spirit
of the more general results of Banzaru [I].

LEMMA I. Let X he a topological space and let Y he a metric space. Sup­
pose r: X ---> 2 Y has closed values. Consider the fc)lIowing statements:

( I) I' is a.l.s.c.

(2) 0[=1'.

(3) ris I.s.c.

(4) 0 r is I.s.c.

(5) <n lin; . ) converges locally unlj(mnly to () [.

Then

(a) statements (2) and (3) are equivalent and thus imply (4);

(b) statement (4) implies (I );

(c) statement (5) implies (4).

Proof: (a) Assume first that r is l.s.c. Since for each x nx) is a closed
set we have (1 r(x) e nx). To show the reverse inclusion let y E nx) and let
c; be positive. Since StCy] is open and r is l.s.c., there is a neighborhood V
of x such that Vel' I(S,[y]). Thus, yEn {S,[nw)]: WE V) so that
y E r( £; x). Since y and t; > 0 were arbitrary we have n x) e (I r( x). Conver­
sely, suppose r = () I and nx) meets some open set G in Y. Choose
YEnX) and £>0 such that S,[y] eG. Since yEn£;X) there exists a
neighborhood V of x such that yES,[nW)] for each w in V. Thus, for
each such wnw) (\ G i= 0, whence r is l.s.c.

(b) The multifunction Or must then be a.l.s.c., and each multifunction
that contains an a.l.s.c. multifunction must itself be a.I.s.c.

(c) Let x E X and let V be a neighborhood of x on which <n l/n; .) >
converges uniformly to () ,. Let G e Y be open, and suppose y E () [(x) (\ G.
Choose /: > 0 for which 05', [.I"] e G. Pick n E Z + so large that lin < I: and for
each H" EO V

r( lin; 11") e 05',:,[0,(11")].

Since.l" E n l/2n; x) there exists a neighborhood W of x contained in Vand
for each II" EO W a point y" E n 1\') for which d()", y,,) < l/2n. It follows that
.1"" E r( lin; II'), whence by the choice of n there exists v:, in 0,( 1\') for which
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d()\"Y:,)<1:/2. Thus, for each WE W we have Y;,.ES,[yJcG, and 13 r IS

l.s.c. at x.

THEOREM I. Let X he a paracompact space and let Y he a Banach !>pace.
Let r: X ---> 2} he an a.l.s.c. multifunction with closed convex values. Consider
the j(JllOll'inR statements.

( I) l' admits a continuous selection f
(2) l' cOl1/ains a l.s.c. multi/unction T I .

(3) l' contains a multi/unction 1'1 for which 1'1 =°/,.
(4) l' contains a multi/unction 1'1 fiJr which <['I (I/n; . ) converges

localll" uni/imnly to () I,'

Theil

(a) statements (1 ) through (3) are equivalent;

(b) statement (4) implies all the others;

(c) if X is locally compact, then statemel1/s (I) through (4) are
equiwlent.

Proo/ (a) Clearly (I) implies (3): take ['I =f The previous lemma
yields (3) implies (2). If (2) holds then the multifunction x ---> conv(T I (x)) is
a l.s.c. multifunction with closed convex values contained in r Hence, by
Michael's theorem it has a continuous selection contained in r

(b) By Lemma I above, (4) implies (2) and hence all the others.

(c) Since (a) and (b) are established, it suffices to prove that (1)
implies (4). We assume (1) holds and take ['I = f Fix x in X and let K be a
compact neighborhood of x. By the continuity of f; for each I: > 0 and w in
K we have ['I (I-:; w) = S, [f( w)]. Now Y is a linear space; so, for each
positive I) we have S,,[S,[f(w)JJ = S,+ ,,[f(w)]. From this fact and the
continuity of j; for each w in K there is a neighborhood V" of w such that
for each:: in V" we have ['1(£;::) c S,'[['I(£; w)]. Since ['1 is l.s.c. and com­
pact valued and the sequence <T( l/n; . ) converges to T 1 on K, by a Dini­
type theorem for multifunctions (see, e.g., Theorem 3 of [2J), the con­
vergence must be uniform to T 1 = 8 I, on K.

3. SELECTIONS AND ApPROXIMATE SELECTIONS

FOR NONCONVEX MULTIFUNCTIONS

By Example 2 there is no hope of showing that each closed valued a.l.s.c.
multifunction defined on a metric space X with values in a complete metric
space Y admits a Borel selection. We shall show, however, that each com-



ON A THEOREM OF DEUTSCH AND KENDEROV 95

pact valued a.l.s.c. multifunction with values in a separable metric space
admits a Borel selection; in fact, it must admit a Baire class two selection.
Our proof rests on the following version of the Kuratowski-Ryll­
Nardzewski selection theorem [7].

KRN SELECTION THEOREM. Let X he a metric space and let Y he a
separahle complete metric space. Suppose 1: X ~ 2 Y has closed values, and
for each open suhset G oj Y r I (G) is of additive class :I.. Then r admits a
Baire class :I. selection.

Although a compact valued a.l.s.c. multifunction r need not be "Borel
measurable," we shall show that its auxiliary multifunction e/ has the
following property: for each open subset G of Y er~ I (G) is a G,j(J subset of
X. Of course, we first need to show that for each x the set erC,) is non­
empty.

LEMMA 2. Let X he a topological .Ipace and let Y he a metric space. Sup­
pose 1: X ~ 2 Y is a.l.s.c. and compact valued. Then for each x in X the set
O,(x) is a nonempty compact suhset olT(x), and <T(l/n;-j) converges to e/
on X.

Proof: We first establish (*): for each x in X whenever {E,,} is a
sequence of positive numbers convergent to zero and for each n E Z +

y"E T(c;,,; x), then <y//> has a subsequence convergent to some point y of
Or(x). For each n choose a point y;, in T(x) for which d(y//,y;,)<E//. By
passing to a subsequence we can assume <y;, > converges to a point
yET(X). Now for each n y;,ET(2<:,,;x). Hence, if for each n we set
)'//=d(y;"y), we have yE T(2<:,,+).//; x). Thus yEerc,). Property (*)
immediately implies that erC,) is a closed set. Since T(x) is closed, we also
have O,(x)c T(x), whence Br(x) is a nonempty compact set. Now let ).>0.
Ifno nEZ' exists such that T(lln;x)cS;[Or(x)], then invoking (*) once
again, 0r(x) - S; [0 rC,) ] would be nonempty, an impossibility. Thus for
each ). > 0 there exists N E Z+ such that for each n ~ N r( lin; x) c

S;[Or(x)]. We always have er(x)cS;[T(lln;x)], and the convergence of
<T( IIn; . )> to 0r is established.

Our next lemma implies that if r is a.l.s.c., then for each E > 0 the
auxiliary multifunction T(<:;') is I.s.c. One can also easily show that if r is
convex valued, the same can be said for each auxiliary multifunction.

LEMMA 3. Let X he a topological space, let Y he a metric .Ipace, and let
r: X ~ 2} he a.l.s.c. Then for each t > 0 and for each suhset E oj Y,
n I:; .) I (E) is open.

Proof Suppose T( t; x) n E =1= 0. Select y in the intersection; then there
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exists a neighborhood V of x such that yE n [S,[I'(II')]: liE Vi. But since
V is a neighborhood of each point H' in V, we have l' E /'(1:: \1') for each such
point. Thus V c 1'(1:: .) I (E).

THEOREM 2. LeI X he a mel ric space and fel Y he a separahfe me/ric

space. Suppose r: X ---+ 2} is a compacl wfued a.f.s.c. mufli(unc/ion. Then r
admils a Baire class 111'0 sefecliofl.

Proof: By Lemma 2 for each x the set 0, (x) is nonempty. Let G c Y be
an open set: we claim that 0, I(G) is a C,)o subset of X. For each flEZ+ let
B II = (SI II[C' J)': then BI< is a closed set, B II c B II j I' and G = U/:~ I B II . Let
E c X be defined by

" {. ! I \ l
E = U U n x: /' ( -:: x ) II BI< *0

J
.

I k I / k \ I.

We first show that 0 I I (G) = E. Let x E E: then for some integers k and fl

I'( Iii: x) II BI< cF 0 U=k,k+l, ... ).

For each j?: k choose .1'/ in the intersection. The property (*) established in
the proof of Lemma 2 implies that (.I') has a subsequence convergent to
some point .1' in 01(X). Since BII is closed, l'E BllcG. Hence XEOrl(G). On
the other hand if 0r(x) II G cF 0, then for some fl 0,(x) II B I1 *0 whence

I { (I \ '}
X E n \1': j' -:: 11' ) II BI< *0 .

/ I J,

It follows that x E E. Thus, by Lemma 3, for each open subset G of Y the
set 81' I(G) is a G"" subset of X. Viewing 81' as a multifunction from X to
the completion of Y, the KRN selection theorem yields a Baire class two
selection for 0 f which is, a fortiori, a selection for r

Coban [4] has shown that if X is metric and Y is metric (resp. complete
metric) and r: X ---+ 2} is l.s.c. with compact (resp. closed) values, then r
admits a Baire class one selection. QUESTION: Does an a.l.s.c. compact
valued multifunction with metric domain and codomain admit a Baire class
one selection?

If X and Yare metric, a compact valued l.s.c. multifunction r: X ---+ 2}
need not admit for each I: > 0 a continuous t:-approximate selection. For
example, if r: [0, 1] ---+ 2 R is defined by

/(x)= : lix: if 1:(x< J

= : I, I ,I if O<x<1- 1

= : I 1 if x=OJ
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then r does not admit a continuous I-approximate selection. Thus. if X
and Yare metric and r: X -> 2 Y is a.l.s.c., then r need not admit for each
I: > 0 a continuous I:-approximate selection. Our final result is, therefore,
best possible.

THEOREM 3. Let X and Y he metric spaces and let r: X -> 2 Y he a.l.s.c,
Thenlor each I: > 0 there exists a Baire class one function f: X -> Y such that
for each x in X f(x) E S,[r(x)].

Proof: For each x in X there exists a neighborhood V\ of x such that
n IS,[r(w)]: WE V,} is nonempty. For each x pick a point y(x) in the
intersection. Since X is paracompact and regular there exists a locally finite
open cover (U i : i E I} such that {Di : i E I} refines {V,: x E X}. For each i E [

pick x(i) E X such that Di c V\(i:' Next, well order Y and define f: X -> Y
by

f(w)=min{y(x(i)): H'E Di },

We first show that f is of Baire class one. Since relatively F" subsets of each
open subset of X are themselves Fr; subsets of X, by a theorem of
Montgomery [9J, it suffices to show that f is locally of Baire class one. Fix
:: in X and pick an open neighborhood W of :: that meets only finitely
many members of the closed cover, say, Dil , Di " ... , Di". Now write f( W), a
subset of the set :y(x(iIl1)): m=I" .. ,n}, in increasing order, say,

[YI'Y2'''''Yp ), where p:S.n. We claim that for each j:S.p
UI W)-l ((YI' .1'2'"'' rJ) is a relatively closed subset of W. To see this let
<H'k >be a sequence in the inverse image convergent to a point It' in W.
There exist IE {I, 2, ..., j) such that YI is a value of f( H'k ) infinitely often.
Thus, for some mE { I, 2, ... , n} Irk ED,,,, and y(x(im)) = YI for infinitely many
indices k. It follows that H' ED,,,,, whence f( H') :S. Y/' i.e., H' E

f ]( rr I' r 20 ... , y , }). This establishes the claim. Now for each j E : L. .., p)

is an Fr; set, whence for each open set G in Y

UI w) I (G)= UI W) I (Gn {YI"'" Yp ))

is an Fr; set. Thus f 1 W is of Baire class one: so, f is globally of Baire class
one,

To see that f is an I:-approximate selection for r, again fix :: in X. By the
definition of f there exists x E X such that:: E V, and f(::) = y(x). However,
r(x)ES,[r(lr)] for each H' in V\: so, in particular, f(::)ES,[r(::)].
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