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1. INTRODUCTION

Let X be a topological space and let Y be a metric space with metric d.
Let 27 denote the collection of all nonempty subsets of Y. By a mul-
tifunction from X to Y we mean a function /= X — 2%, A multifunction /" is
called lower semicontinuous (lsc) if for each open set G in Y
{x:Mx)nG#J} is an open subset of X. A single valued function
Ji X — Yis called a selection for I'if for each xe X f(x)e I'(x). Perhaps the
most well-known result on the existence of continuous selections is the
following theorem of Michael [87: if X is paracompact and Y is a Banach
space and /: X — 2" is L.s.c. and has closed convex values, then /" admits a
continuous selection.

Michael obtained this result after first proving a more generally
applicable approximate selection result. If £ is a nonempty subset of ¥ and
¢>0, let S,[ E] denote the umion of the open balls in ¥ whose centers run
over E. A function f:X— Y is called an e-approximate selection for
I X — 2" if for each x in X f(x)e S, [F(x)]. Specifically, Michael proved
that if X is paracompact and Y is a normed linear space and /> X - 2" is
Ls.c. and has convex values, then for cach ¢>0 /" admits a continuous
g-approximate selection. It is easy to see that lower semicontinuity is not
necessary for either of the two above results. Recently, Deutsch and Ken-
derov [5] characterized those multifunctions defined on a paracompact
space with convex values in a normed linear space that admit for each ¢ a
continuous ¢-approximate selection as those that are almost lower semicon-
tinuous (als.c.): for each ¢>0 and for each x in X there exists a
neighborhood V of x such that () {S,[7(w)]: we ¥V} # . It is easy to see
that lower semicontinuity implies almost lower semicontinuity and that
almost lower semicontinuity is necessary for the existence of a continuous
sclection. Following the method of Michael they were able to prove the
following result.
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THEOREM. Let X be paracompact and let Y be a 1-dimensional normed
linear space. Suppose I': X — 27 has compact convex values. Then I admits a
continuous selection if and only if I is als.c..

Naturally, they asked if this result held more generally. In this article we
show that their result is best possible, i.e., it fails if Y is 2 dimensional. We
also present several characterizations of closed convex valued mul-
tifunctions with values in a Banach space that admit continuous selections
in terms of the notion of almost lower semicontinuity, one of which
involves the existence of a fixed point for a certain map on the sub-
multifunctions of the given one. Finally, we prove some selection and
approximate selection theorems for nonconvex valued alsc. mul-
tifunctions.

Before proceeding we present some additional notation and terminology.
If 4 is a subset of a topological space, 4 will denote the closure of 4; if A4 is
a subset of a linear space, conv(A4) will denote the convex hull of 4. If X
and Y are topological spaces, a function f: X' — Y is said to be of Baire
class a < Q if for each open set G in Y /' ~'(G) is a set of additive class « in
X. In particular f1 X — Y is said to be of Baire class one (resp. 1wo) if for
each open set Gin Y f " '(G) is an F, (resp. G,) set. For a thorough dis-
cussion of such functions the reader should consult [6], where the
functions of Baire class « are called B-measurable of class a. Suppose now
that Y is a metric space and I X — 2" is a multifunction. If Ec Y we write
I Y(E) for the set {x: [(x)nE+# &} If for each ne Z* I',; X 27, we
will say that {I",> converges to I' if for each xe X {[',(x)) converges to
I'(x) in Hausdorff distance [3]: for each ¢ > 0 there exists Ne Z* such that
for each n 2 N both S,[I(x)]>7,(x) and S.[1,(x)]>7(x). This notion,
as well as more general notions of convergence of multifunctions (and the
convergence of associated measurable selections), is considered in a recent
paper of Salinetti and Wets [10].

Let ¢>0 and again let /= X - 2" For each xe X define I'(¢; x) Y as
follows:

I'(¢; x)= { y: for some neighborhood V of x
yeNV {S[M(w)]:weV}).

Clearly, I is a.ls.c. if and only if for each ¢ >0 and x in X the set ['(¢; x) is
nonempty. For each x let 6,(x)={),., {(¢;x). Evidently, 6 (x)c I'(x),
and if /7 admits a continuous selection f then f{(x)e 0 {x). Example 2
below shows that almost lower semicontinuity if 7" does not ensure that the
sets {0,(x): xe X} arc nonempty. However, we shall see that this is the
case if /" is a.l.s.c. and compact valued.
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2. CONTINUOUS SELECTIONS FOR CONVEX VALUED MULTIFUNCTIONS

We first produce an a.l.s.c. multifunction 7 [0, 1] — 2%~ ® with compact
convex values that fails to admit a continuous selection.

ExampLE 1. For each neZ* let a,=i[1/n+1/(n+1)]. Define
[0, 17— 2% R as follows:

I'(x)=(0,0) ifx=0

1 1 1 1
= Cconv < ) (4,,0), < 1 if <x<-.
n’ +1° n+1 n

The values of /" are all compact convex sets. [t is easy to see that

Op(x)=1I(x) if xg {4
={(1/n 1)} if x=1/nfor some n>1.

Since for each xe[0, 1] the set ¢,(x) is nonempty, we conclude that
I'(&; x) 1s nonempty for each x and ¢ >0, whence " 1s a.l.s.c. Now if f were
a continuous selection for I, then the requirement f(x)e0,(x) would
imply (i) /(0)= (0, 0) and (ii) for each integer n> 1 f(1/n)=(1/n, 1). Since
this is incompatible with continuity, no continuous selection for I exists.

We next show that an a.l.s.c. multifunction I [0, 1] — 2% % with closed
convex values need not admit a Borel measurable selection.

ExamprLt 2. Let B be non-Borel subset of [0,1]. Define
I:[0,11-2% % by
Ox)y={(3z)ky>0,z21/y] if xeB
={(0,2):220} if x¢B.
Let n be an arbitrary positive integer. Then for each xe [0, 1] there exists
(1, z)e I'(x) such that |[(y, 2)— (0, n)| < 1/n: if xe B take (y, z)=(1/n, n),

and if x ¢ B, take (», z)= (0, n). Thus, /" is a.ls.c. But if / is a selection for
I, we have

o y>0,221y})=8.
Thus, the inverse image under / of a closed set need not be Borel, whence f
is not Borel measurable.

The last example shows that if X is paracompact and Y is a Banach
space and /7 X —» 27 is als.c. and has closed convex values, then /" need
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not admit even a Borel selection. Still, we can characterize those I" that
admit continuous slections in terms of the maps /', » " (¢;-) and I, — 0,
defined on submultifunctions of /. We need a preliminary lemma. It should
be noted that both this lemma and Lemma 2 below are much in the spirit
of the more general results of Banzaru [17.

LEMMA 1. Let X be a topological space and let 'Y be a metric space. Sup-
pose I X = 27 has closed values. Consider the following statements:

(1y I'isals.c.

2y 0,=T.

(3) I'isls.ec.

(4) Oris Ls.c.

(5) <I(1/n;)> converges locally uniformly to 0.

(a) statements (2) and (3) are equivalent and thus imply (4);

(b) statement (4) implies (1);

)
(¢} statement (5) implies (4).

Proof. (a) Assume first that 7 is Ls.c. Since for each x ['(x) is a closed
set we have 0 (x) < I'(x). To show the reverse inclusion let vy e /(x) and let
¢ be positive. Since S, [ v] is open and /" is Ls.c., there is a neighborhood V
of x such that V<7 YS,[v]). Thus, ye() {S,[I(w)]: we V] so that
ye (e x). Since y and ¢ > 0 were arbitrary we have I'(x) < 6,(x). Conver-
sely, suppose I'=0, and [(x) meets some open set G in Y. Choose
rel(x) and e¢>0 such that S,[y]< G. Since ye /(e x) there exists a
neighborhood V of x such that ye S, [/ (w)] for each w in V. Thus, for
each such w I'(w)n G # J, whence I 1s |s.c.

(b) The multifunction 8 must then be a.l.s.c., and each multifunction
that contains an a.l.s.c. multifunction must itself be a.ls.c.

(¢) Let xe X and let V be a neighborhood of x on which {/(1/n;-)>
converges uniformly to 0,. Let G < Y be open, and suppose ye 8 (x)nG.
Choose ¢ > 0 for which S,[ v] = G. Pick ne Z™" so large that 1/n < ¢ and for

each we V
I'(Vmw)ya S, -[0nw)].

Since v e I'(1/2n: x) there exists a neighborhood W of x contained in V and
for each we W a point y, € I'(w) for which d(y, v,)< 1/2n. It follows that
v € I'(1/n;w), whence by the choice of n there exists v, in §,{n) for which
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d(y.,y.)<e/2. Thus, for each we W we have y,eS,[y]cG, and 6, is
ls.c. at x.

THEOREM 1. Let X be a paracompact space and let 'Y be a Banach space.
Let I X — 27 be an als.c. multifunction with closed convex values. Consider
the following statements.

1" admits a continuous selection f.

D —

(1)

(2) 1" contains a Ls.c. multifunction I .

(3) [I' contains a multifunction I'y for which I'y =0,
(4)

EESVE R

1" contains a multifunction I’ for which {I"\(1/n;")) converges
locally uniformly to 0.

Then

(a) statements (1) through (3) are equivalent;

(b) statement (4) implies all the others:;

() if X is locually compact, then statements (1) through (4) are
equivalent.

Proof. (a) Clearly (1) implies (3): take I, = f. The previous lemma
yields (3) implies (2). If (2) holds then the multifunction x — conv(I"|(x)) is
a Ls.c. muitifunction with closed convex values contained in /. Hence, by
Michael’s theorem it has a continuous selection contained in [

(b) By Lemma 1 above, (4) implies (2) and hence all the others.

{c) Since (a) and (b) are established, it suffices to prove that (1)
implies (4). We assume (1) holds and take /', = /. Fix x in X and let K be a
compact neighborhood of x. By the continuity of f, for each ¢ >0 and w in
K we have I'\(e;w)=S,[ f(w)]. Now Y is a linear space; so, for each
positive & we have S;[S.[ f(w)]1]=S.,s[ f(w)]. From this fact and the
continuity of £, for each w in K there is a neighborhood V. of w such that
for each - in V|, we have I'|(¢; z) = S,[I1(e; w)]. Since I'; is Ls.c. and com-
pact valued and the sequence <{/(1/n;-)) converges to I", on K, by a Dini-
type theorem for multifunctions (see, e.g., Theorem 3 of [2]), the con-
vergence must be uniform to Iy =6, on K.

3. SELECTIONS AND APPROXIMATE SELECTIONS
FOR NONCONVEX MULTIFUNCTIONS

By Example 2 there is no hope of showing that each closed valued a.ls.c.
multifunction defined on a metric space X with values in a complete metric
space Y admits a Borel selection. We shall show, however, that each com-



ON A THEOREM OF DEUTSCH AND KENDEROV 95

pact valued a.ls.c. multifunction with values in a separable metric space
admits a Borel selection; in fact, it must admit a Baire class two selection.
Our proof rests on the following version of the Kuratowski-Ryll-
Nardzewski selection theorem [7].

KRN SeLECTION THEOREM. Let X he a metric space and let 'Y be a
separable complete metric space. Suppose I': X — 2" has closed values, and
for each open subset G of Y I " '(G) is of additive class «. Then I' admits a
Buaire class o selection.

Although a compact valued a.ls.c. multifunction /" need not be “Borel
measurable,” we shall show that its auxiliary multifunction ¢,  has the
folowing property: for each open subset G of Y 0,7'(G) is a G, subset of
X. Of course, we first need to show that for each x the set ,(x) is non-
empty.

LeMMA 2. Let X be a topological space and let Y be a metric space. Sup-
pose I': X -2V is als.c. and compact valued. Then for each x in X the set
0,{x) is a nonempty compact subset of I'(x), and {I'(1/n;)> converges to 0,
on X.

Proof. We first establish (x): for each x in X whenever {e,} is a
sequence of positive numbers convergent to zero and for each neZ*
v,el(g,; x), then (»,)> has a subsequence convergent to some point y of
0 ,(x). For each n choose a point y, in [(x) for which d(y,, y,)<e,. By
passing to a subsequence we can assume {y,) converges to a point
vel(x). Now for each n y,el(2,;x). Hence, if for each n we set
J,=d(v,,y), we have yel(2¢,+ 4,:x). Thus yef (x). Property (%)
immediately implies that 6 -(x) is a closed set. Since /'(x) is closed, we also
have 0,(x) < I'(x), whence 8 (x) is a nonempty compact set. Now let 4> 0.
If no ne Z* exists such that I'(1/n; x) = S,[0,{x)], then invoking (*) once
again, 0,(x)— S;[0,(x)] would be nonempty, an impossibility. Thus for
each A>0 there exists NeZ™* such that for each n=N I'(l/n;x)c
S.[0,(x)]. We always have 8 (x)< S,[I'(1/n; x)], and the convergence of
{T{(1/n;+)) to O 1s established.

Our next lemma implies that if /" is als.c., then for each ¢>0 the
auxiliary multifunction /(e;-) is I.s.c. One can also easily show that if I" is
convex valued, the same can be said for each auxiliary multifunction.

LEmMMA 3. Ler X be a topological space, let Y be a metric space, and let
12X 52" he als.c. Then for each ¢>0 and for each subset E of Y,
;) "(E) is open.

Proof. Suppose (e; x)n E# 5. Select v in the intersection; then there
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exists a neighborhood ¥ of x such that ye () {S,[/(w)]: we V|. But since
V' is a neighborhood of each point w in V. we have ve /(e w) for each such
point. Thus V< I'(e:') ' (E).

THEOREM 2. Let X be a metric space and let 'Y be a separable metric
space. Suppose I X =27 is a compact valued al.s.c. multifunction. Then I’
admits a Baire cluss two selection.

Proof. By Lemma 2 for each x the set ), (x} is nonempty. Let G < Y be
an open sct; we claim that 0, '(G) is a G, subset of X. For each ne Z* let
B,=(S,,lG 1) then B, is a closed set, B,< B, ,,.and G=J/_, B,. Let
E <= X be defined by

E=1) 1) () qxt (—,:.\")mB,,;éQ :
no 1k 1=k W) 7 S
We first show that 0,-'(G)= E. Let xe L; then for some integers k and n
'/, x)nB,# o (j=k. k+1..).

For cach ;= k choose y, in the intersection. The property () established in
the proof of Lemma 2 implies that {3, has a subsequence convergent to
some point 1 in ,{x). Since B, is closed. ve B, < G. Hence xe#,.'(G). On
the other hand if 0,(x)~ G # F, then for some n 0,(x)~ B, # J whence

RS h {w: 1'<L;n‘\)mb’”¢@}.
Jeo / /

It follows that x € E. Thus, by Lemma 3, for each open subset G of Y the
set 0,'(G) is a G, subset of X. Viewing 6, as a multifunction from X to
the completion of ¥, the KRN selection theorem yields a Baire class two
selection for 6, which is, a fortiori, a selection for I

Coban [4] has shown that if X is metric and Y is metric (resp. complete
metric) and /X — 2" is Ls.c. with compact (resp. closed) values, then I
admits a Baire class one sclection. QUESTION: Does an a.ls.c. compact
valued multifunction with metric domain and codomain admit a Baire class
one selection?

If X and Y are metric, a compact valued ls.c. multifunction I: X —» 27"
need not admit for each ¢ >0 a continuous &-approximate selection. For
cxample, if 73 [0, 1] - 2% is defined by

I(x)y={ljx] if r<y<ld

=11 if x=0
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then /" does not admit a continuous l-approximate sclection. Thus, if X
and Y are metric and /> X - 2" is als.c, then /" need not admit for each
¢>0 a continuous ¢-approximate selection. Our final result is, therefore,
best possible.

THEOREM 3. Let X and Y be metric spaces and let I': X — 2" be als.c.
Then for each ¢ >0 there exists a Baire class one function - X — Y such that
for each x in X f(x)e S, [I'(x)]

Proof. For each x in X there exists a neighborhood V| of x such that
N4S.[Iw)]:we V! is nonempty. For each x pick a point y(x) in the
intersection. Since X is paracompact and regular there exists a locally finite
open cover [ U;:iel} such that {U;iel} refines {V :xeX}. Foreachiel
pick x(i)e X such that U, = V. Next, well order Y and define f: X - Y
by

Sw)y=min{ v(x(i)):we U,}.

We first show that / is of Baire class one. Since relatively F, subsets of each
open subset of X are themselves F_ subsets of X, by a theorem of
Montgomery [9], it suffices to show that f is locally of Baire class onc. Fix
- in X and pick an open neighborhood W of - that meets only finitely
many members of the closed cover, say, U,, U,,..., U, . Now write f(W), a
subset of the set {v(x(i,)): m=1,.n}, in increasing order, say,
\V1s Vaeew ¥pfs  where p<n. We claim that for each j<p
(FIW) ({3, ¥asew 1)) I8 a relatively closed subset of W. To see this let
{w, > be a sequence in the inverse image convergent to a point w in W.
There exist /e {1, 2., j} such that y, is a value of f(w,) infinitely often.
Thus, for some me {1, 2,...n} w,e U, and y(x(i,)) = y, for infinitely many
indices k. It follows that welU, ., whence f(w)<y, ie, we
S "Ly, rases v;)). This establishes the claim. Now for each je [ 1., p]

SIW) D)= W) T v D = (I DOy e 3y 1))
is an F_ set, whence for each open sct G in Y

(SIW) G =(fIW) (GO (¥ 1y )

is an F, set. Thus f'| W is of Baire class one: so, / is globally of Baire class
one.

To see that f is an g-approximate selection for 7, again fix z in X. By the
definition of / there exists x € X such that z€ V. and f(z) = y(x). However,
v(x)e S [F(w)] for each win ¥ ; so, in particular, f(z)e S, [/(z)].
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