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I. INTRODUCTION

Let X be a topological space and let Y be a metric space with metric d.
Let 2 Y denote the collection of all nonempty subsets of Y. By a mul
tifunction from X to Y we mean a function r: X ---> 2 Y. A multifunction r is
called lower semicontinuous (l.s.c) if for each open set G in Y
{x: r(x) (\ G # 0} is an open subset of X. A single valued function
I X ---> Y is called a selection for r if for each x E X f(x) E r(x). Perhaps the
most well-known result on the existence of continuous selections is the
following theorem of Michael [8]: if X is paracompact and Y is a Banach
space and r: X ---> 2 Y is l.s.c. and has closed convex values, then r admits a
continuous selection.

Michael obtained this result after first proving a more generally
applicable approximate selection result. If E is a nonempty subset of Yand
I: > 0, let S,[E] denote the union of the open balls in Y whose centers run
over E. A function I X ---> Y is called an c;-approximate selection for
r: X ---> 2 Y iffor each x in X f(x) E S,[r(x)]. Specifically, Michael proved
that if X is paracompact and Y is a normed linear space and r: X ---> 2 Y is
l.s.c. and has convex values, then for each I: > 0 r admits a continuous
f.-approximate selection. It is easy to see that lower semicontinuity is not
necessary for either of the two above results. Recently, Deutsch and Ken
derov [5] characterized those multifunctions defined on a paracompact
space with convex values in a normed linear space that admit for each f. a
continuous c;-approximate selection as those that are almost lower semicon
tinuous (a.l.s.c.): for each I: > 0 and for each x in X there exists a
neighborhood V of x such that n {S,[r(w)]: \l'E V} # 0. It is easy to see
that lower semicontinuity implies almost lower semicontinuity and that
almost lower semicontinuity is necessary for the existence of a continuous
selection. Following the method of Michael they were able to prove the
following result.
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THEOREM. Let X he paracompact and let Y he a I-dimensional normed
linear space. Suppose I: X ---+ 2 Y has compact convex values. Then I admits a
continuous selection if" and only if" I is a.l.s.c..

Naturally, they asked if this result held more generally. In this article we
show that their result is best possible, i.e., it fails if Y is 2 dimensional. We
also present several characterizations of closed convex valued mul
tifunctions with values in a Banach space that admit continuous selections
in terms of the notion of almost lower semicontinuity, one of which
involves the existence of a fixed point for a certain map on the sub
multifunctions of the given one. Finally, we prove some selection and
approximate selection theorems for nonconvex valued a.l.s.c. mul
tifunctions.

Before proceeding we present some additional notation and terminology.
If A is a subset of a topological space, A will denote the closure of A; if A is
a subset of a linear space, conv(A) will denote the convex hull of A. If X

and Yare topological spaces, a function f: X ---+ Y is said to be of Baire
class rJ. < Q if for each open set G in Y f -1 (G) is a set of additive class rJ. in
X. In particular f: X ---+ Y is said to be of Baire class one (resp. two) if for
each open set G in Y f '(G) is an Fer (resp. G"er) set. For a thorough dis
cussion of such functions the reader should consult [6J, where the
functions of Baire class rJ. are called B-measurable of class rJ.. Suppose now
that Y is a metric space and r: X ---+ 2 Y is a multifunction. If £ c Y we write
I '(E) for the set {x:r(x)n£#0}. If for each nEZ+ I n:X---+2 Y

, we
will say that <In) converges to I if for each x E X <In(X) converges to
r(x) in Hausdorff distance [3 J: for each I: > 0 there exists N E Z+ such that
for each n? N both S,[r(x)J::::J In(X) and ScCln(X)J::::J T(x). This notion,
as well as more general notions of convergence of multifunctions (and the
convergence of associated measurable selections), is considered in a recent
paper of Salinetti and Wets [1OJ.

Let I: > 0 and again let r: X ---+ 2 Y. For each x E X define T(1:; x) c Y as
follows:

r(e; x) = {y: for some neighborhood V of x

yE n {S,[r(w)]: WE V}}.

Clearly, I is a.l.s.c. if and only if for each f. > 0 and x in X the set r(1:; x) is
nonempty. For each x let 8r (x)=n,>or(e;x). Evidently, 8r (x)cT(x),
and if I admits a continuous selection f then f(X)E8 r (x). Example2
below shows that almost lower semicontinuity if I does not ensure that the
sets {() r(x): x E X} are nonempty. However, we shall see that this is the
case if r is a.l.s.c. and compact valued.



92 GERALD BEER

2. CONTINUOUS SELECTIONS FOR CONVEX VALUED MULTIFUNCTIONS

We first produce an a.l.s.c. multifunction r: [0, I] -+ 2R x R with compact
convex values that fails to admit a continuous selection.

EXAMPLE 1. For each nEZ+ let an=Hl/n+l/(n+l)]. Define
r: [0, I] -+ 2Rx

R as follows:

l(x) = (0, 0)

= COny lC, I), (an' 0), C~ l' I)J
if x=o

I I
if--<x~-.

n+1 n

The values of r are all compact convex sets. It is easy to see that

() I( x ) = l( x )

= [(lIn, I l}

if X${~,*,L... }

if x = I in for some n > I.

Since for each x E [0, I] the set () I(X) is nonempty, we conclude that
l( c;; x) is nonempty for each x and c; > 0, whence r is a.l.s.c. Now iff were
a continuous selection for r, then the requirement f(X)EOr(X) would
imply (i) frO) = (0, 0) and (ii) for each integer n> I f( lin) = (lin, I). Since
this is incompatible with continuity, no continuous selection for r exists.

We next show that an a.l.s.c. multifunction r: [0, I] -+ 2R x R with closed
convex values need not admit a Borel measurable selection.

EXAMPLE 2. Let B be non-Borel subset of [0, I]. Define
r: [0, I] -+ 2R x R by

l(x) = {(y, ;;): y>O,;;? I

={(O,z):z?O}

if XE B

if X$ B.

Let n be an arbitrary positive integer. Then for each x E [0, I] there exists
(y,;;) E l(x) such that II(Y,;;) - (0, n)ll:( lin: if XE B take (y,.:;-) = (lIn, n),
and if x $ B, take (y, ;;) = (0, n). Thus, r is a.l.s.c. But if f is a selection for
r, we have

f 1({y,;;):y>O,;;?I/y}J=B.

Thus, the inverse image underf of a closed set need not be Borel, whencej
is not Borel measurable.

The last example shows that if X is paracompact and Y is a Banach
space and r: X -+ 2 Y is a.l.s.c. and has closed convex values, then r need
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not admit even a Borel selection. Still, we can characterize those I' that
admit continuous slections in terms of the maps 1'\ ---> 1'\ (1:;') and 1'\ ---> (1 [,

defined on submultifunctions of I'. We need a preliminary lemma. It should
be noted that both this lemma and Lemma 2 below are much in the spirit
of the more general results of Banzaru [I].

LEMMA I. Let X he a topological space and let Y he a metric space. Sup
pose r: X ---> 2 Y has closed values. Consider the fc)lIowing statements:

( I) I' is a.l.s.c.

(2) 0[=1'.

(3) ris I.s.c.

(4) 0 r is I.s.c.

(5) <n lin; . ) converges locally unlj(mnly to () [.

Then

(a) statements (2) and (3) are equivalent and thus imply (4);

(b) statement (4) implies (I );

(c) statement (5) implies (4).

Proof: (a) Assume first that r is l.s.c. Since for each x nx) is a closed
set we have (1 r(x) e nx). To show the reverse inclusion let y E nx) and let
c; be positive. Since StCy] is open and r is l.s.c., there is a neighborhood V
of x such that Vel' I(S,[y]). Thus, yEn {S,[nw)]: WE V) so that
y E r( £; x). Since y and t; > 0 were arbitrary we have n x) e (I r( x). Conver
sely, suppose r = () I and nx) meets some open set G in Y. Choose
YEnX) and £>0 such that S,[y] eG. Since yEn£;X) there exists a
neighborhood V of x such that yES,[nW)] for each w in V. Thus, for
each such wnw) (\ G i= 0, whence r is l.s.c.

(b) The multifunction Or must then be a.l.s.c., and each multifunction
that contains an a.l.s.c. multifunction must itself be a.I.s.c.

(c) Let x E X and let V be a neighborhood of x on which <n l/n; .) >
converges uniformly to () ,. Let G e Y be open, and suppose y E () [(x) (\ G.
Choose /: > 0 for which 05', [.I"] e G. Pick n E Z + so large that lin < I: and for
each H" EO V

r( lin; 11") e 05',:,[0,(11")].

Since.l" E n l/2n; x) there exists a neighborhood W of x contained in Vand
for each II" EO W a point y" E n 1\') for which d()", y,,) < l/2n. It follows that
.1"" E r( lin; II'), whence by the choice of n there exists v:, in 0,( 1\') for which
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d()\"Y:,)<1:/2. Thus, for each WE W we have Y;,.ES,[yJcG, and 13 r IS

l.s.c. at x.

THEOREM I. Let X he a paracompact space and let Y he a Banach !>pace.
Let r: X ---> 2} he an a.l.s.c. multifunction with closed convex values. Consider
the j(JllOll'inR statements.

( I) l' admits a continuous selection f
(2) l' cOl1/ains a l.s.c. multi/unction T I .

(3) l' contains a multi/unction 1'1 for which 1'1 =°/,.
(4) l' contains a multi/unction 1'1 fiJr which <['I (I/n; . ) converges

localll" uni/imnly to () I,'

Theil

(a) statements (1 ) through (3) are equivalent;

(b) statement (4) implies all the others;

(c) if X is locally compact, then statemel1/s (I) through (4) are
equiwlent.

Proo/ (a) Clearly (I) implies (3): take ['I =f The previous lemma
yields (3) implies (2). If (2) holds then the multifunction x ---> conv(T I (x)) is
a l.s.c. multifunction with closed convex values contained in r Hence, by
Michael's theorem it has a continuous selection contained in r

(b) By Lemma I above, (4) implies (2) and hence all the others.

(c) Since (a) and (b) are established, it suffices to prove that (1)
implies (4). We assume (1) holds and take ['I = f Fix x in X and let K be a
compact neighborhood of x. By the continuity of f; for each I: > 0 and w in
K we have ['I (I-:; w) = S, [f( w)]. Now Y is a linear space; so, for each
positive I) we have S,,[S,[f(w)JJ = S,+ ,,[f(w)]. From this fact and the
continuity of j; for each w in K there is a neighborhood V" of w such that
for each:: in V" we have ['1(£;::) c S,'[['I(£; w)]. Since ['1 is l.s.c. and com
pact valued and the sequence <T( l/n; . ) converges to T 1 on K, by a Dini
type theorem for multifunctions (see, e.g., Theorem 3 of [2J), the con
vergence must be uniform to T 1 = 8 I, on K.

3. SELECTIONS AND ApPROXIMATE SELECTIONS

FOR NONCONVEX MULTIFUNCTIONS

By Example 2 there is no hope of showing that each closed valued a.l.s.c.
multifunction defined on a metric space X with values in a complete metric
space Y admits a Borel selection. We shall show, however, that each com-
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pact valued a.l.s.c. multifunction with values in a separable metric space
admits a Borel selection; in fact, it must admit a Baire class two selection.
Our proof rests on the following version of the Kuratowski-Ryll
Nardzewski selection theorem [7].

KRN SELECTION THEOREM. Let X he a metric space and let Y he a
separahle complete metric space. Suppose 1: X ~ 2 Y has closed values, and
for each open suhset G oj Y r I (G) is of additive class :I.. Then r admits a
Baire class :I. selection.

Although a compact valued a.l.s.c. multifunction r need not be "Borel
measurable," we shall show that its auxiliary multifunction e/ has the
following property: for each open subset G of Y er~ I (G) is a G,j(J subset of
X. Of course, we first need to show that for each x the set erC,) is non
empty.

LEMMA 2. Let X he a topological .Ipace and let Y he a metric space. Sup
pose 1: X ~ 2 Y is a.l.s.c. and compact valued. Then for each x in X the set
O,(x) is a nonempty compact suhset olT(x), and <T(l/n;-j) converges to e/
on X.

Proof: We first establish (*): for each x in X whenever {E,,} is a
sequence of positive numbers convergent to zero and for each n E Z +

y"E T(c;,,; x), then <y//> has a subsequence convergent to some point y of
Or(x). For each n choose a point y;, in T(x) for which d(y//,y;,)<E//. By
passing to a subsequence we can assume <y;, > converges to a point
yET(X). Now for each n y;,ET(2<:,,;x). Hence, if for each n we set
)'//=d(y;"y), we have yE T(2<:,,+).//; x). Thus yEerc,). Property (*)
immediately implies that erC,) is a closed set. Since T(x) is closed, we also
have O,(x)c T(x), whence Br(x) is a nonempty compact set. Now let ).>0.
Ifno nEZ' exists such that T(lln;x)cS;[Or(x)], then invoking (*) once
again, 0r(x) - S; [0 rC,) ] would be nonempty, an impossibility. Thus for
each ). > 0 there exists N E Z+ such that for each n ~ N r( lin; x) c

S;[Or(x)]. We always have er(x)cS;[T(lln;x)], and the convergence of
<T( IIn; . )> to 0r is established.

Our next lemma implies that if r is a.l.s.c., then for each E > 0 the
auxiliary multifunction T(<:;') is I.s.c. One can also easily show that if r is
convex valued, the same can be said for each auxiliary multifunction.

LEMMA 3. Let X he a topological space, let Y he a metric .Ipace, and let
r: X ~ 2} he a.l.s.c. Then for each t > 0 and for each suhset E oj Y,
n I:; .) I (E) is open.

Proof Suppose T( t; x) n E =1= 0. Select y in the intersection; then there
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exists a neighborhood V of x such that yE n [S,[I'(II')]: liE Vi. But since
V is a neighborhood of each point H' in V, we have l' E /'(1:: \1') for each such
point. Thus V c 1'(1:: .) I (E).

THEOREM 2. LeI X he a mel ric space and fel Y he a separahfe me/ric

space. Suppose r: X ---+ 2} is a compacl wfued a.f.s.c. mufli(unc/ion. Then r
admils a Baire class 111'0 sefecliofl.

Proof: By Lemma 2 for each x the set 0, (x) is nonempty. Let G c Y be
an open set: we claim that 0, I(G) is a C,)o subset of X. For each flEZ+ let
B II = (SI II[C' J)': then BI< is a closed set, B II c B II j I' and G = U/:~ I B II . Let
E c X be defined by

" {. ! I \ l
E = U U n x: /' ( -:: x ) II BI< *0

J
.

I k I / k \ I.

We first show that 0 I I (G) = E. Let x E E: then for some integers k and fl

I'( Iii: x) II BI< cF 0 U=k,k+l, ... ).

For each j?: k choose .1'/ in the intersection. The property (*) established in
the proof of Lemma 2 implies that (.I') has a subsequence convergent to
some point .1' in 01(X). Since BII is closed, l'E BllcG. Hence XEOrl(G). On
the other hand if 0r(x) II G cF 0, then for some fl 0,(x) II B I1 *0 whence

I { (I \ '}
X E n \1': j' -:: 11' ) II BI< *0 .

/ I J,

It follows that x E E. Thus, by Lemma 3, for each open subset G of Y the
set 81' I(G) is a G"" subset of X. Viewing 81' as a multifunction from X to
the completion of Y, the KRN selection theorem yields a Baire class two
selection for 0 f which is, a fortiori, a selection for r

Coban [4] has shown that if X is metric and Y is metric (resp. complete
metric) and r: X ---+ 2} is l.s.c. with compact (resp. closed) values, then r
admits a Baire class one selection. QUESTION: Does an a.l.s.c. compact
valued multifunction with metric domain and codomain admit a Baire class
one selection?

If X and Yare metric, a compact valued l.s.c. multifunction r: X ---+ 2}
need not admit for each I: > 0 a continuous t:-approximate selection. For
example, if r: [0, 1] ---+ 2 R is defined by

/(x)= : lix: if 1:(x< J

= : I, I ,I if O<x<1- 1

= : I 1 if x=OJ
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then r does not admit a continuous I-approximate selection. Thus. if X
and Yare metric and r: X -> 2 Y is a.l.s.c., then r need not admit for each
I: > 0 a continuous I:-approximate selection. Our final result is, therefore,
best possible.

THEOREM 3. Let X and Y he metric spaces and let r: X -> 2 Y he a.l.s.c,
Thenlor each I: > 0 there exists a Baire class one function f: X -> Y such that
for each x in X f(x) E S,[r(x)].

Proof: For each x in X there exists a neighborhood V\ of x such that
n IS,[r(w)]: WE V,} is nonempty. For each x pick a point y(x) in the
intersection. Since X is paracompact and regular there exists a locally finite
open cover (U i : i E I} such that {Di : i E I} refines {V,: x E X}. For each i E [

pick x(i) E X such that Di c V\(i:' Next, well order Y and define f: X -> Y
by

f(w)=min{y(x(i)): H'E Di },

We first show that f is of Baire class one. Since relatively F" subsets of each
open subset of X are themselves Fr; subsets of X, by a theorem of
Montgomery [9J, it suffices to show that f is locally of Baire class one. Fix
:: in X and pick an open neighborhood W of :: that meets only finitely
many members of the closed cover, say, Dil , Di " ... , Di". Now write f( W), a
subset of the set :y(x(iIl1)): m=I" .. ,n}, in increasing order, say,

[YI'Y2'''''Yp ), where p:S.n. We claim that for each j:S.p
UI W)-l ((YI' .1'2'"'' rJ) is a relatively closed subset of W. To see this let
<H'k >be a sequence in the inverse image convergent to a point It' in W.
There exist IE {I, 2, ..., j) such that YI is a value of f( H'k ) infinitely often.
Thus, for some mE { I, 2, ... , n} Irk ED,,,, and y(x(im)) = YI for infinitely many
indices k. It follows that H' ED,,,,, whence f( H') :S. Y/' i.e., H' E

f ]( rr I' r 20 ... , y , }). This establishes the claim. Now for each j E : L. .., p)

is an Fr; set, whence for each open set G in Y

UI w) I (G)= UI W) I (Gn {YI"'" Yp ))

is an Fr; set. Thus f 1 W is of Baire class one: so, f is globally of Baire class
one,

To see that f is an I:-approximate selection for r, again fix :: in X. By the
definition of f there exists x E X such that:: E V, and f(::) = y(x). However,
r(x)ES,[r(lr)] for each H' in V\: so, in particular, f(::)ES,[r(::)].
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